Introdução
A convivência de equipamentos em diversas tecnologias diferentes somada à inadequação das instalações facilita a emissão de energia eletromagnética e com isto é comum que se tenha problemas de compatibilidade eletromagnética.
A EMI é a energia que causa resposta indesejável a qualquer equipamento e que pode ser gerada por centelhamento nas escovas de motores, chaveamento de circuitos de potência, em acionamentos de cargas indutivas e resistivas, acionamentos de relés, chaves, disjuntores, lâmpadas fluorescentes, aquecedores, ignições automotivas, descargas atmosféricas e mesmo as descargas eletrostáticas entre pessoas e equipamentos, aparelhos de microondas, equipamentos de comunicação móvel, etc. Tudo isto pode provocar alterações causando sobretensão, subtensão, picos, transientes, etc. e que em uma rede de comunicação pode ter seus impactos. Isto é muito comum nas indústrias e fábricas, onde a EMI é muito freqüente em função do maior uso de máquinas (máquinas de soldas, por exemplo) e motores (CCMs) e em redes digitais e de computadores próximas a essas áreas.
O maior problema causado pela EMI são as situações esporádicas e que degradam aos poucos os equipamentos e seus componentes. Os mais diversos problemas podem ser gerados pela EMI, por exemplo, em equipamentos eletrônicos, podemos ter falhas na comunicação entre dispositivos de uma rede de equipamentos e/ou computadores, alarmes gerados sem explicação, atuação em relés que não seguem uma lógica e sem haver comando para isto e, queima de componentes e circuitos eletrônicos, etc. É muito comum a presença de ruídos na alimentação pelo mau aterramento e blindagem, ou mesmo erro de projeto.
A topologia e a distribuição do cabeamento, os tipos de cabos, as técnicas de proteções são fatores que devem ser considerados para a minimização dos efeitos de EMI. Lembrar que em altas freqüências, os cabos se comportam como um sistema de transmissão com linhas cruzadas e confusas, refletindo energia e espalhando-a de um circuito a outro. Mantenha em boas condições as conexões. Conectores inativos por muito tempo podem desenvolver resistência ou se tornar detectores de RF.
Um exemplo típico de como a EMI pode afetar o comportamento de um componente eletrônico, é um capacitor que fique sujeito a um pico de tensão maior que sua tensão nominal especificada, com isto pode-se ter a degradação do dielétrico (a espessura do dielétrico é limitada pela tensão de operação do capacitor, que pode produzir um gradiente de potencial inferior à rigidez dielétrica do material), causando um mau funcionamento e em alguns casos a própria queima do capacitor. Ou ainda, podemos ter a alteração de correntes de polarização de transistores levando-os a saturação ou corte, ou dependendo da intensidade a queima de componentes por efeito joule.
Muitas vezes a confiabilidade de um sistema de controle é frequentemente colocada em risco devido às suas más instalações. Comumente, os usuários fazem vistas grossas e em análises mais criteriosas, descobre-se problemas com as instalações, envovendo cabos e suas rotas e acondicionamentos, blindagens e aterramentos.
É de extrema importância que haja a conscienização de todos os envolvidos e mais do que isto, o comprometimento com a confiabilidade e segurança operacional e pessoal em uma planta.
Este artigo provê informações e dicas sobre aterramento e vale sempre a pena lembrar que as regulamentações locais, em caso de dúvida, prevalecem sempre.
Controlar o ruído em sistemas de automação é vital, porque ele pode se tornar um problema sério mesmo nos melhores instrumentos e hardware de aquisição de dados e atuação.
Qualquer ambiente industrial contém ruído elétrico em fontes, incluindo linhas de energia AC, sinais de rádio, máquinas e estações, etc.
Felizmente, dispositivos e técnicas simples, tais como, a utilização de métodos de aterramento adequado, blindagem, fios trançados, os métodos média de sinais, filtros e amplificadores diferenciais podem controlar o ruído na maioria das medições.
Os inversores de freqüências contêm circuitos de comutação que podem gerar interferência eletromagnética (EMI). Eles contêm amplificadores de alta energia de comutação que podem gerar EMI significativa nas freqüências de 10 MHz a 300 MHz. Certamente existe potencial de que este ruído de comutação possa gerar intermitências em equipamentos em suas proximidades. Enquanto a maioria dos fabricantes toma os devidos cuidados em termos de projetos para minimizar este efeito, a imunidade completa não é possível. Algumas técnicas então de layout, fiação, aterramento e blindagem contribuem significativamente nesta minimização.
A redução da EMI irá minimizar os custos iniciais e futuros problemas de funcionamento em qualquer sistema.
Veremos neste artigo, como a blindagem adequada pode minimizar o efeito de ruídos. Trataremos de ruídos por acoplamento capacitivo.
Se o ruído resulta de um campo elétrico, a atuação do shield é eficaz, pois Q2 não existirá dentro de um invólucro fechado e aterrado.
Um acoplamento por campo elétrico é modelado como uma capacitância entre os dois circuitos, vide figura 2. A figura 3 mostra o modelo físico.
A capacitância equivalente, Cef, é diretamente proporcional a área de atuação do campo elétrico e inversamente proporcional à distância entre os dois circuitos. Assim, aumentando-se a separação ou minimizando a área, a influência de Cef será minimizada e, consequentemente, o acoplamento capacitivo afetará menos o sinal. É o efeito de capacitância entre dois corpos com cargas elétricas, separadas por um dielétrico, o que chamamos de efeito da capacitância mútua.
O nível de acoplamento capacitivo é diretamente proporcional à freqüência e amplitude do sinal de ruído.
O efeito do campo elétrico é proporcional à freqüência e inversamente proporcional à distância.
O nível de perturbação depende das variações da tensão (dv/dt) e o valor da capacitância de acoplamento entre o “cabo perturbador” e o “cabo vítima”.
A capacitância de acoplamento aumenta com:
A influência pode ser minimizada usado-se adequadamente o shield que atuará como uma blindagem (gaiola de Faraday). A blindagem deve ser colocada entre os condutores capacitivamente acoplados e ligada à terra apenas em um ponto, no lado da fonte de sinal. Vide figura 5. A figura 4 mostra uma condição inadequada, onde se tem a corrente de loop circulando pelo shield.
Envolva sempre que possível o condutor ou equipamento com material metálico (blindagem de Faraday). O ideal é que cubra cem por cento da parte a ser protegida e que se aterre esta blindagem para que a capacitância parasita entre o condutor e a blindagem não atue como elemento de realimentação ou de crosstalk. A figura 6 mostra a interferência entre cabos, onde o acoplamento capacitivo entre cabos induz transiente (pickups eletrostáticos) de tensão. Nesta situação a corrente de interferência é drenada ao terra pelo shield, sem afetar os níveis de sinais.
A figura 7 mostra exemplo de proteção contra transientes.
Interferências eletrostáticas podem ser reduzidas:
A figura 8 mostra a capacitância de acoplamento entre dois condutores separados por uma distância D.
Aterramento e blindagem são requisitos mandatórios para garantir a integridade dos dados de uma planta. É muito comum na prática encontrarmos funcionamento intermitente e erros grosseiros em medições devido às más instalações.
Os efeitos de ruídos podem ser minimizados com técnicas adequadas de projetos, instalação, distribuição de cabos, aterramento e blindagens. Aterramentos inadequados podem ser fontes de potenciais indesejados e perigosos e que podem comprometer a operação efetiva de um equipamento ou o próprio funcionamento de um sistema.
A blindagem (shield) deve ser conectada ao potencial de referência do sinal que está protegendo, vide figura 9.
Quando se tem múltiplos segmentos deve-se mantê-los conectados, garantindo o mesmo potencial de referência, conforme a figura 10.
Figura 10 - Blindagem me múltiplos segmentos conectada ao potencial de referência do sinal que está protegendo
Neste caso a corrente não circulará pela malha e não cancelará campos elétricos.
Deve-se minimizar o comprimento do condutor que se estende fora da blindagem e garantir uma boa conexão do shield ao terra.
Ocorre uma distribuição das correntes, em função das suas freqüências, pois a corrente tende a seguir o caminho de menor impedância.
Até alguns kHz: a reatância indutiva é desprezível e a corrente circulará pelo caminho de menor resistência.
Acima de kHz: há predominância da reatância indutiva e com isto a corrente circulará pelo caminho de menor indutância.
O caminho de menor impedância é aquele cujo percurso de retorno é próximo ao percurso de ida, por apresentar maior capacitância distribuída e menor indutância distribuída.
Deve-se minimizar o comprimento do condutor que se estende fora da blindagem e garantir uma boa conexão do shield ao terra.
Vale citar neste caso:
A blindagem de cabos é usada para eliminar interferências por acoplamento capacitivo devidas a campos elétricos.
A blindagem só é eficiente quando estabelece um caminho de baixa impedância para o terra.
Uma blindagem flutuante não protege contra interferências.
A malha de blindagem deve ser conectada ao potencial de referência (terra) do circuito que está sendo blindado.
Aterrar a blindagem em mais de um ponto pode ser problemático.
Minimizar comprimento da ligação blindagem-referência, pois funciona como uma bobina.
Campos elétricos são muito mais fáceis de blindar que campos magnéticos e o uso de blindagens em um ou mais pontos funciona contra campos elétricos.
O uso de metais não magnéticos em volta de condutores não blinda contra campos magnéticos.
A chave para blindagem magnética é reduzir a área de loop. Utiliza-se um par trançado ou o retorno de corrente pela blindagem.
Para prevenir a radiação de um condutor, uma blindagem aterrada em ambos os lados é geralmente utilizada acima da freqüência de corte, porém alguns cuidados devem ser tomados.
Apenas uma quantidade limitada de ruído magnético pode ser blindada devido ao loop de terra formado.
Qualquer blindagem na qual flui corrente de ruído não deve ser parte do caminho para o sinal.
Utilize um cabo trançado blindado ou um cabo triaxial em baixas freqüências.
A efetividade da blindagem do cabo trançado aumenta com o número de voltas por cm.
Vimos neste artigo vários detalhes sobre os efeitos do acoplamento capacitivo e o uso do shield. Nos próximos artigos veremos detalhes do acoplamento indutivo.
Todo projeto de automação deve levar em conta os padrões para garantir níveis de sinais adequados, assim como, a segurança exigida pela aplicação.
Recomenda-se que anualmente se tenha ações preventivas de manutenção, verificando cada conexão ao sistema de aterramento, onde deve-se assegurar a qualidade de cada conexão em relação à robustez, confiabilidade e baixa impedância (deve-se garantir que não haja contaminação e corrosão).
Este artigo não substitui a NBR 5410, a NBR 5418, os padrões IEC 61158 e IEC 61784 e nem os perfis e guias técnicos do PROFIBUS. Em caso de discrepância ou dúvida,as normas, os padrões IEC 61158 e IEC 61784, perfis, guias técnicos e manuais de fabricantes prevalecem. Sempre que possível, consulte a EN50170 para as regulamentações físicas, assim como as práticas de segurança de cada área.
Acesse a lista completa de artigos técnicos SMAR.
2016-09-10
"Utilizamos cookies essenciais e tecnologias semelhantes de acordo com a nossa Política de Privacidade e, ao continuar navegando, você concorda com estas condições." Ler mais