A convivência de equipamentos em diversas tecnologias diferentes somada à inadequação das instalações facilita a emissão de energia eletromagnética e com isto é comum que se tenha problemas de compatibilidade eletromagnética.
A EMI é a energia que causa resposta indesejável a qualquer equipamento e que pode ser gerada por centelhamento nas escovas de motores, chaveamento de circuitos de potência, em acionamentos de cargas indutivas e resistivas, acionamentos de relés, chaves, disjuntores, lâmpadas fluorescentes, aquecedores, ignições automotivas, descargas atmosféricas e mesmo as descargas eletrostáticas entre pessoas e equipamentos, aparelhos de microondas, equipamentos de comunicação móvel, etc. Tudo isto pode provocar alterações causando sobretensão, subtensão, picos, transientes, etc. e que em uma rede de comunicação pode ter seus impactos. Isto é muito comum nas indústrias e fábricas, onde a EMI é muito freqüente em função do maior uso de máquinas (máquinas de soldas, por exemplo) e motores (CCMs) e em redes digitais e de computadores próximas a essas áreas.
O maior problema causado pela EMI são as situações esporádicas e que degradam aos poucos os equipamentos e seus componentes. Os mais diversos problemas podem ser gerados pela EMI, por exemplo, em equipamentos eletrônicos, podemos ter falhas na comunicação entre dispositivos de uma rede de equipamentos e/ou computadores, alarmes gerados sem explicação, atuação em relés que não seguem uma lógica e sem haver comando para isto e, queima de componentes e circuitos eletrônicos, etc. É muito comum a presença de ruídos na alimentação pelo mau aterramento e blindagem, ou mesmo erro de projeto.
A topologia e a distribuição do cabeamento, os tipos de cabos, as técnicas de proteções são fatores que devem ser considerados para a minimização dos efeitos de EMI. Lembrar que em altas freqüências, os cabos se comportam como um sistema de transmissão com linhas cruzadas e confusas, refletindo energia e espalhando-a de um circuito a outro. Mantenha em boas condições as conexões. Conectores inativos por muito tempo podem desenvolver resistência ou se tornar detectores de RF.
Um exemplo típico de como a EMI pode afetar o comportamento de um componente eletrônico, é um capacitor que fique sujeito a um pico de tensão maior que sua tensão nominal especificada, com isto pode-se ter a degradação do dielétrico (a espessura do dielétrico é limitada pela tensão de operação do capacitor, que pode produzir um gradiente de potencial inferior à rigidez dielétrica do material), causando um mau funcionamento e em alguns casos a própria queima do capacitor. Ou ainda, podemos ter a alteração de correntes de polarização de transistores levando-os a saturação ou corte, ou dependendo da intensidade a queima de componentes por efeito joule.
Em medições:
Muitas vezes a confiabilidade de um sistema de controle é frequentemente colocada em risco devido às suas más instalações. Comumente, os usuários fazem vistas grossas e em análises mais criteriosas, descobre-se problemas com as instalações, envovendo cabos e suas rotas e acondicionamentos, blindagens e aterramentos.
É de extrema importância que haja a conscienização de todos os envolvidos e mais do que isto, o comprometimento com a confiabilidade e segurança operacional e pessoal em uma planta.
Este artigo provê informações e dicas sobre aterramento e vale sempre a pena lembrar que as regulamentações locais, em caso de dúvida, prevalecem sempre.
Controlar o ruído em sistemas de automação é vital, porque ele pode se tornar um problema sério mesmo nos melhores instrumentos e hardware de aquisição de dados e atuação.
Qualquer ambiente industrial contém ruído elétrico em fontes, incluindo linhas de energia AC, sinais de rádio, máquinas e estações, etc.
Felizmente, dispositivos e técnicas simples, tais como, a utilização de métodos de aterramento adequado, blindagem, fios trançados, os métodos média de sinais, filtros e amplificadores diferenciais podem controlar o ruído na maioria das medições.
Os inversores de freqüências contêm circuitos de comutação que podem gerar interferência eletromagnética (EMI). Eles contêm amplificadores de alta energia de comutação que podem gerar EMI significativa nas freqüências de 10 MHz a 300 MHz. Certamente existe potencial de que este ruído de comutação possa gerar intermitências em equipamentos em suas proximidades. Enquanto a maioria dos fabricantes toma os devidos cuidados em termos de projetos para minimizar este efeito, a imunidade completa não é possível. Algumas técnicas então de layout, fiação, aterramento e blindagem contribuem significativamente nesta minimização.
A redução da EMI irá minimizar os custos iniciais e futuros problemas de funcionamento em qualquer sistema.
Um dos principais objetivos ao se projetar é manter todos os pontos comuns de retornos de sinal no mesmo potencial. Com a alta frequência no caso de inversores (até 300MHz), harmônicas são geradas pelos amplificadores de comutação e nestas freqüências, o sistema de terra se parece mais com uma série de indutores e capacitores do que um caminho de baixa resistência. O uso de malhas e tranças ao invés de fios (fios curtos são melhores para altas frequências) que interligam nos pontos de aterramento têm uma eficiência maior neste caso. Vide figura 4.
Outro importante objetivo é minimizar o acoplamento magnético entre circuitos. Este é geralmente conseguido por separações mínimas e roteamento segregados dos cabos. O acoplamento por rádio-freqüência é minimizado com as devidas blindagens e técnicas de aterramento. Os transientes (surges) são minimizados com filtros de linha e supressores de energia apropriado em bobinas e outras cargas indutivas.
Um dicionário não-técnico define o termo terra como um ponto em contato com a terra, um retorno comum em um circuito elétrico, e um ponto arbitrário de potencial zero de tensão.
Aterrar ou ligar alguma parte de um sistema elétrico ou circuito para a terra garante segurança pessoal e, geralmente, melhora o funcionamento do circuito.
Infelizmente, um ambiente seguro e robusto em termos de aterramento, muitas vezes não acontece simultaneamente.
Fio terra
Todo circuito deve dispor de condutor de proteção em toda a sua extensão.
Aterramentos de Equipamentos Elétricos Sensíveis
Os sistemas de aterramento devem executar várias funções simultâneas: como proporcionar segurança pessoal e para o equipamento. Resumidamente, segue uma lista de funções básicas dos sistemas de aterramento em:
O condutor neutro é normalmente isolado e o sistema de alimentação empregado deve ser o TN-S (T: ponto diretamente aterrado, N: massas ligadas diretamente ao ponto de alimentação aterrado, S: condutores distintos para neutro e proteção).
O condutor neutro exerce a sua função básica de conduzir as correntes de retorno do sistema.
O condutor de proteção exerce a sua função básica de conduzir à terra as correntes de massa. Todas as carcaças devem ser ligadas ao condutor de proteção.
O condutor de equipotencialidade deve exercer a sua função básica de referência de potencial do circuito eletrônico.
Figura 1 – Sistema TN-S
Para atender as funções anteriores destacam-se três características fundamentais:
Independente da finalidade, proteção ou funcional, o aterramento deve ser único em cada local da instalação. Existem situações onde os terras podem ser separados, porém precauções devem ser tomadas.
Em relação à instalação dos componentes do sistema de aterramento alguns critérios devem ser seguidos:
Equipotencializar
Definição: Equipotencializar é deixar tudo no mesmo potencial.
Na prática: Equipotencializar é minimizar a diferença de potencial para reduzir acidentes.
Em cada edificação deve ser realizada uma equipotencialização principal e ainda as massas das instalações situadas em uma mesma edificação devem estar conectadas a equipotencialização principal e desta forma a um mesmo e único eletrodo de aterramento. Veja figuras 2 e 3.
A equipotencialização funcional tem a função de equalizar o aterramento e garantir o bom funcionamento dos circuitos de sinal e a compatibilidade eletromagnética.
Condutor para Equipotencialização
Principal – deve ter no mínimo a metade da seção do condutor de proteção de maior seção e no mínimo:
Figura 2 – Equipotencialização
Figura 3 – Linha de Aterramento e Equipotencial em Instalações
Figura 4 – Material para Equipotencializar
Considerações sobre equipotenciais
Observe a figura 5, onde temos uma fonte geradora de alta tensão e ruídos de alta freqüência e um sistema de medição de temperatura a 25 m da sala de controle e onde dependendo do acondicionamento dos sinais, podemos ter até 2.3kV nos terminais de medição. Conforme vai se melhorando as condições de blindagem, aterramento e equalização chega-se à condição ideal para a medição.
Figura 5 – Exemplo da importância do aterramento e equipotencialização e sua influência no sinal
Em sistemas distribuídos, como de controle de processos industriais, onde se tem áreas fisicamente distantes e com alimentação de diferentes fontes, a orientação é que se tenha o sistema de aterramento em cada local e que sejam aplicadas as técnicas de controle de EMI em cada percurso do encaminhamento de sinal, conforme representado na figura 2.
Implicações de um mau aterramento
As implicações que um mau ou mesmo inadequado aterramento pode causar não se limitam apenas aos aspectos de segurança. Os principais efeitos de um aterramento inadequado são choques elétricos aos usuários pelo contato, resposta lenta (ou intermitente) dos sistemas de proteção (fusíveis, disjuntores, etc.).
Mas outros problemas operacionais podem ter origem no aterramento deficiente:
O sistema de aterramento deve ser único e deve atender a diferentes finalidades:
A conseqüência é que equipamentos com carcaças metálicas ficam expostos a ruído nos circuitos de aterramento (energia e raios).
Para atender aos requisitos de segurança, proteção contra raios e EMI, o sistema de aterramento deveria ser um plano com impedância zero, onde teríamos a mistura de diferentes níveis de corrente destes sistemas sem interferência. Isto é, uma condição ideal, onde na prática não é bem assim.
Em termos da indústria de processos podemos identificar alguns tipos de terras:
Observação: terra de “chassi” ou "carcaça" é usado como uma proteção contra choque elétrico. Este tipo de terra não é um terra de "resistência zero", e seu potencial de terra pode variar. No entanto, os circuitos são quase sempre ligados à terra para a prevenção de riscos de choque.
Aterramento em um único ponto
O sistema de aterramento por um único pode ser visto na figura 6, onde o ponto marcante é um único ponto de terra do qual se tem a distribuição do mesmo para toda a instalação.
Figura 6 – Aterramento em um único ponto
Esta configuração é mais apropriada para o espectro de freqüências baixas ainda atende perfeitamente a sistemas eletrônicos de alta freqüência instalados em áreas reduzidas.
E ainda, este sistema dever ser isolado e não deve servir de caminho de retorno para as correntes de sinais, que devem circular por condutores de sinais, por exemplo, com pares balanceados.
Este tipo de aterramento paralelo elimina o problema de impedância comum, mas o faz em detrimento da utilização de um monte de cabeamento. Além disso, a impedância de cada fio pode ser muito elevada e as linhas de terra podem se tornar fontes de ruído do sistema. Este tipo de situação pode ser minimizado escolhendo o tipo correto de condutor (tipo AWG 14). Cabos de bitola maiores ajudam na redução da resistência de terra, enquanto o uso de fio flexível reduz a impedância de terra.
Para freqüências altas, o sistema multiponto é o mais adequado, conforme caracterizado na figura 7a, inclusive simplificando a instalação.
Figura 7a– Aterramento em multipontos
Figura 7b – Aterramento na Prática
Muitas conexões de baixa impedância entre os condutores PE e os eletrodos de aterramento em combinação com múltiplos caminhos de alta impedância entre os eletrodos e as impedâncias dos condutores cria um sistema de aterramento complexo com uma rede de impedância (ver figura 7b), e as correntes que fluem através dele provoca diferentes potenciais de terra nas interligações em vários desta rede.
Os sistemas com aterramentos multipontos que empregam circuitos balanceados geralmente não apresentam problemas de ruídos. Neste caso ocorre filtragem do ruído, onde o seu campo fica contido entre o cabo e o plano de terra.
Figura 8 – Aterramento em multipontos inadequado
Figura 9 – Aterramento adequado, em um único ponto
Na figura 9, tem-se um aterramento adequado onde as correntes individuais são conduzidas a um único ponto de aterramento.
A ligação à terra em série é muito comum porque é simples e econômica. No entanto, este é o aterramento que proporciona um terra sujo, devido à impedância comum entre os circuitos. Quando vários circuitos compartilham um fio terra, as correntes de um circuito (que flui através da impedância finita da linha de base comum) pode provocar variações na potencial de terra dos demais circuitos. Se as correntes são grandes o suficiente, as variações do potencial de terra podem causar sérias perturbações nas operações de todos os circuitos ligados ao terra comum de sinal.
Um loop de terra ocorre quando existe mais de um caminho de aterramento, gerando correntes indesejáveis entre estes pontos.
Estes caminhos formam o equivalente ao loop de uma antena que capta as correntes de interferência com alta eficiência.
Com isto a referência de tensão fica instável e o ruído aparece nos sinais.
Figura 10 – Loop de terra
Na prática, o que se faz é um “sistema misto”, separando circuitos semelhantes e segregando quanto ao nível de ruído:
Sendo estes três circuitos conectados ao condutor de proteção.
Figura 11 – Aterramento ao nível dos equipamentos na prática
Os sinais podem variar basicamente devido a:
As principais fontes de interferências são:
O acoplamento capacitivo é representado pela interação de campos elétricos entre condutores. Um condutor passa próximo a uma fonte de ruído (perturbador), capta este ruído e o transporta para outra parte do circuito (vítima). É o efeito de capacitância entre dois corpos com cargas elétricas, separadas por um dielétrico, o que chamamos de efeito da capacitância mútua.
O efeito do campo elétrico é proporcional à freqüência e inversamente proporcional à distância.
O nível de perturbação depende das variações da tensão (dv/dt) e o valor da capacitância de acoplamento entre o “cabo perturbador” e o “cabo vítima”.
A capacitância de acoplamento aumenta com:
As figuras 12a e 12b mostram exemplos de acoplamentos capacitivos.
Figura 12a - Efeito por acoplamento capacitivo
Figura 12b – Exemplo de efeito por acoplamento capacitivo
Na figura 13 podemos ver o acoplamento e suas fontes de tensão e corrente em modo comum e diferencial.
Figura 13 – Modo diferencial e modo comum – Acoplamento capacitivo
Envolva sempre que possível o condutor ou equipamento com material metálico (blindagem de Faraday). O ideal é que cubra cem por cento da parte a ser protegida e que se aterre esta blindagem para que a capacitância parasita entre o condutor e a blindagem não atue como elemento de realimentação ou de crosstalk. A figura 14 mostra a interferência entre cabos, onde o acoplamento capacitivo entre cabos induz transiente (pickups eletrostáticos) de tensão.Nesta situação a corrente de interferência é drenada ao terra pelo shield, sem afetar os níveis de sinais.
Figura 14 – Interferência entre cabos: o acoplamento capacitivo entre cabos induz transiente (pickups eletrostáticos) de tensão
A figura 15 mostra exemplo de proteção contra transientes.
Figura 15 - Exemplo de proteção contra transientes (melhor solução contra corrente de Foucault)
Interferências eletrostáticas podem ser reduzidas:
A figura 16 mostra a capacitância de acoplamento entre dois condutores separados por uma distância D.
Figura 16 – Acoplamento capacitivo entre condutores a uma distância D
O “cabo perturbador” e o “cabo vítima” são acompanhadas por um campo magnético. O nível de perturbação depende das variações de corrente (di /dt) e da indutância de acoplamento mútuo. O acoplamento indutivo aumenta com:
A impedância de carga do cabo ou circuito perturbador.
Figura 17a – Acoplamento indutivo entre condutores
Figura 18 – Acoplamento indutivo entre cabo e campo
Figura 19 – Acoplamento indutivo entre cabo e loop de terra
Cabo de Comunicação Digital |
Cabos com e sem shield: 60Vdc ou 5Vac e < 400Vac |
Cabos com e sem shield: > 400Vac |
Qualquer cabo sujeito à exposição de raios |
|
Cabo de comunicação Digital |
10 cm |
20 cm |
50 cm |
|
Cabos com e sem shield: 60Vdc ou 25Vac e< 400Vac |
10 cm |
10 cm |
50 cm |
|
Cabos com e sem shield: > 400Vac |
20 cm |
10 cm |
50 cm |
|
Qualquer cabo sujeito à exposição de raios |
50 cm |
50 cm |
50 cm |
Tabela 1 – Distâncias entre cabos de comunicação digital e outros tipos de cabos para garantir a proteção a EMI
Figura 20 – Interferência entre cabos: campos magnéticos através do acoplamento indutivo entre cabos induzem transientes (pickups eletromagnéticos) de corrente
As Interferências Eletromagnéticas podem ser reduzidas:
Figura 21 – Indutância mútua entre dois condutores
Para minimizar o efeito de indução deve-se usar o cabo de par trançado que minimiza a área (S) e diminuem o efeito da tensão induzida Vb em função do campo B, balanceando os efeitos (média dos efeitos segundo as distâncias):
O cabo de par trançado é composto por pares de fios. Os fios de um par são enrolados em espiral a fim de, através do efeito de cancelamento, reduzir o ruído e manter constantes as propriedades elétricas do meio por toda a sua extensão.
O efeito de redução com o uso da trança tem sua eficiência em função do cancelamento do fluxo, chamada de Rt (em dB):
onde n é o número de voltas/m e l é o comprimento total do cabo. Veja figura 22a e figura 22b.
O efeito de cancelamento reduz a diafonia (crosstalk) entre os pares de fios e diminui o nível de interferência eletromagnética/radiofreqüência. O número de tranças nos fios pode ser variado a fim de reduzir o acoplamento elétrico. Com sua construção proporciona um acoplamento capacitivo entre os condutores do par.Tem um comportamento mais eficaz em baixas freqüências (< 1MHz).Quando não é blindado, tem a desvantagem com o ruído em modo-comum. Para baixas freqüências, isto é quando o comprimento do cabo é menor que 1/20 do comprimento de onda da freqüência do ruído, a blindagem (malha ou shield) apresentará o mesmo potencial em toda sua extensão, neste caso recomenda-se conectar a blindagem em um só ponto de terra. Em altas freqüências, isto é quando o comprimento do cabo é maior que 1/20 do comprimento de onda da freqüência do ruído, a blindagem apresentará alta suscetibilidade ao ruído e neste caso recomenda-se que seja aterrada nas duas extremidades.
No caso indutivo Vruído = 2πBAcosα onde B é o campo e α é oângulo em que o fluxo corta o vetor área(A) ou ainda em função da indutância mútua M: Vruído = 2πfMI onde I é a corrente no cabo de potência.
Figura 22a – Efeito de acoplamento indutivo em cabos paralelos
Figura 22b – Minimização do efeito de acoplamento indutivo em cabos torcidos
Figura 22c – Exemplo de ruído por indução
Figura 22d – Exemplo de Cabos Profibus próximos a cabo de potência
O uso de cabo de par trançados é muito eficiente desde que a indução em cada área de torção seja aproximadamente igual a indução adjacente.Seu uso é eficiente em modo diferencial, circuitos balanceados e tem baixa eficiência em baixas freqüências em circuitos desbalanceados. Em circuitos de alta freqüência com multipontos aterrados, a eficiência é alta uma vez que a corrente de retorno tende a fluir pelo retorno adjacente. Contudo, em altas freqüências em modo comum o cabo tem pouca eficiência.
A figura 23 detalha a situação do Profibus-DP e os loops de terra.
Figura 23 - Profibus-DP e os loops de terra
Veremos a seguir o uso de canaletas metálicas na minimização de correntes de Foucault.
O espaçamento entre as canaletas facilita a perturbação gerada pelo campo magnético. Além disso, esta descontinuidade pode facilitar a diferença de potencial entre cada segmento da canaleta e no caso de um surto de corrente, gerado, por exemplo, por uma descarga atmosférica ou um curto, a falta de continuidade não permitirá que a corrente circule pela canaleta de alumínio, conseqüentemente não protegerá o cabo Profibus.
O ideal é que se una cada segmento com a maior área de contato possível o que terá uma maior proteção à indução eletromagnética e ainda que se tenha entre cada segmento um condutor de cada lado da canaleta, com comprimento o menor possível, para garantir um caminho alternativo às correntes caso haja um aumento de resistência nas junções entre os segmentos.
Com a montagem adequada da canaleta de alumínio, o campo, ao penetrar na placa de alumínio da canaleta, produz um fluxo magnético variável em função do tempo [f = a.sen(w.t)], dando origem a uma f.e.m. induzida [ E = - df/dt = a.w.cos(w.t)].
Em freqüências altas, a f.e.m. induzida na placa de alumínio será maior, dando origem a um campo magnético maior, anulando quase que completamente o campo magnético gerado pelo cabo de potência. Esse efeito de cancelamento é menor em baixas freqüências. Em altas freqüências o cancelamento é mais eficiente.
Esse é o efeito das placas e telas metálicas frente à incidência de ondas eletromagnéticas; elas geram seus próprios campos que minimizam ou mesmo anulam o campo através delas, funcionando assim como verdadeiras blindagens às ondas eletromagnéticas. Funcionam como uma gaiola de Faraday.
Certifique-se que as chapas e os anéis de acoplamento sejam feitos do mesmo material que as canaletas/bandejas de cabos. Proteja os ponto de conexões contra corrosão depois da montagem, por exemplo, com tinta de zinco ou verniz.
Embora os cabos sejam blindados, a blindagem contra campos magnéticos não é tão eficiente quanto é contra campos elétricos.Em baixas freqüências, os pares trançados absorvem a maior parte dos efeitos da interferência eletromagnética. Já em altas freqüências esses efeitos são absorvidos pela blindagem do cabo. Sempre que possível, conecte as bandejas de cabos ao sistema de linha equipotencial.
Figura 24 – Proteção de transientes com o uso de canaletas metálicas
A grande maioria dos fabricantes de equipamentos de campo, como transmissores de pressão, temperatura, posicionadores, conversores, etc recomenda o aterramento local de seus produtos. É comum que em suas carcaças exista um ou mais terminal de aterramento.
Ao se instalar os equipamentos, normalmente, suas carcaças estão em contato com a parte estrutural, ou tubulações e, consequentemente, aterradas. Nos casos em que a carcaça é isolada de qualquer ponto da estrutura, os fabricantes recomendam o aterramento local, onde recomenda-se a conexão a menor possível com fio AWG 12.Neste caso, deve-se ter o cuidado em relação a diferença de potencial entre o ponto aterrado e o painel onde se encontra o controlador (PLC).
Alguns fabricantes recomendam ainda que o equipamento fique flutuando, isto é, isolado da estrutura e que não seja aterrado, evitando os loops de corrente.
Em relação as áreas classificadas, recomenda-se consultar as regulamentações locais.
Em equipamentos microprocessados e com comunicação digital, alguns fabricantes incorporam ou tornam disponível os protectores de surtos ou transientes. Estes proporcionam a proteção a correntes de picos, fornecendo um caminho de desvio de baixa impedância para o ponto de terra.
Algumas dicas gerais envolvendo painéis de controle, CCMs e instrumentação
Aterramento e blindagem são requisitos mandatórios para garantir a integridade dos dados de uma planta. É muito comum na prática encontrarmos funcionamento intermitente e erros grosseiros em medições devido às más instalações.
Os efeitos de ruídos podem ser minimizados com técnicas adequadas de projetos, instalação, distribuição de cabos, aterramento e blindagens. Aterramentos inadequados podem ser fontes de potenciais indesejados e perigosos e que podem comprometer a operação efetiva de um equipamento ou o próprio funcionamento de um sistema.
A blindagem (shield) deve ser conectada ao potencial de referência do sinal que está protegendo, vide figura 25.
Figura 25 - Blindagem conectada ao potencial de referência do sinal que está protegendo
Quando se tem múltiplos segmentos deve-se mantê-los conectados, garantindo o mesmo potencial de referência, conforme a figura 26.
Figura 26 - Blindagem me múltiplos segmentos conectada ao potencial de referência do sinal que está protegendo
Neste caso a corrente não circulará pela malha e não cancelará campos magnéticos.
Deve-se minimizar o comprimento do condutor que se estende fora da blindagem e garantir uma boa conexão do shield ao terra.
Figura 27 - Efeito Blindagem x aterramento em um único ponto
Ocorre uma distribuição das correntes, em função das suas freqüências, pois a corrente tende a seguir o caminho de menor impedância.
Até alguns kHz: a reatância indutiva é desprezível e a corrente circulará pelo caminho de menor resistência.
Acima de kHz: há predominância da reatância indutiva e com isto a corrente circulará pelo caminho de menor indutância.
O caminho de menor impedância é aquele cujo percurso de retorno é próximo ao percurso de ida, por apresentar maior capacitância distribuída e menor indutância distribuída.
Deve-se minimizar o comprimento do condutor que se estende fora da blindagem e garantir uma boa conexão do shield ao terra.
Figura 28- Efeito Blindagem x aterramento em dois pontos
Vale citar neste caso:
A blindagem de cabos é usada para eliminar interferências por acoplamento capacitivo devidas a campos elétricos.
A blindagem só é eficiente quando estabelece um caminho de baixa impedância para o terra.
Uma blindagem flutuante não protege contra interferências.
A malha de blindagem deve ser conectada ao potencial de referência (terra) do circuito que está sendo blindado.
Aterrar a blindagem em mais de um ponto pode ser problemático.
Minimizar comprimento da ligação blindagem-referência, pois funciona como uma bobina.
Figura 29- Deve-se minimizar o comprimento da ligação blindagem-referência pois funciona como uma bobina.
Campos elétricos são muito mais fáceis de blindar que campos magnéticos e o uso de blindagens em um ou mais pontos funciona contra campos elétricos.
O uso de metais não magnéticos em volta de condutores não blinda contra campos magnéticos.
A chave para blindagem magnética é reduzir a área de loop. Utiliza-se um par trançado ou o retorno de corrente pela blindagem.
Para prevenir a radiação de um condutor, uma blindagem aterrada em ambos os lados é geralmente utilizada acima da freqüência de corte, porém alguns cuidados devem ser tomados.
Apenas uma quantidade limitada de ruído magnético pode ser blindada devido ao loop de terra formado.
Qualquer blindagem na qual flui corrente de ruído não deve ser parte do caminho para o sinal.
Utilize um cabo trançado blindado ou um cabo triaxial em baixas freqüências.
A efetividade da blindagem do cabo trançado aumenta com o número de voltas por cm.
Recomenda-se verificar a NBR 5418 para aterramento e ligação com sistema equipotencial de sistemas intrinsecamente seguros.
Um circuito intrinsecamente seguro deve estar flutuando ou estar ligado ao sistema equipotencial associado com a área classificada em somente um ponto.
O nível de isolação requerido (exceto em um ponto) deve ser projetado para suportar 500 V no ensaio de isolação de acordo com 6.4.12 da IEC 60079-11.
Quando este requisito não for atendido, então o circuito deve ser considerado aterrado naquele ponto. Mais de uma conexão ao terra é permitida no circuito, desde que o circuito seja dividido em sub circuitos galvanicamente isolados, e cada qual esteja aterrado somente em um ponto.
Blindagens devem ser conectadas a terra ou à estrutura de acordo com a ABNT NBR IEC 60079-14.
Sempre que possível, conecte as bandejas de cabos ao sistema de linha equipotencial.
As malhas(Shield) devem ser aterradas em um único ponto no condutor de equalização de potencial. Se houver necessidade, por razões funcionais, de outros pontos de aterramento é permitido que sejam feitos por meio de pequenos capacitores, tipo cerâmico, inferiores a 1 nF e para 1500V, desde que a somatória das capacitâncias não ultrapasse 10 nF.
Nunca instale um dispositivo que tenha sido instalado anteriormente sem uma barreira intrinsecamente segura em um sistema intrinsecamente seguro, pois o zener de proteção pode estar queimado e não vai atuar em áreas intrinsecamente segura.
Ao considerar a questão de shield e aterramento em barramentos de campo, deve-se levar em conta:
De acordo com a IEC 61158-2, aterrar significa estar permanentemente conectado ao terra através de uma impedância suficientemente baixa e com capacidade de condução suficiente para prevenir qualquer tensão que possa resultar em danos de equipamentos ou pessoas. Linhas de tensão com 0 Volts devem ser conectadas ao terra e serem galvanicamente isoladas do barramento fieldbus. O propósito de se aterrar o shield é evitar ruídos de alta freqüência.
Preferencialmente, o shield deve ser aterrado em dois pontos, no início e final de barramento, desde que não haja diferença de potencial entre estes pontos, permitindo a existência e caminhos a corrente de loop. Na prática, quando esta diferença existe, recomenda-se aterrar shield somente em um ponto, ou seja, na fonte de alimentação ou na barreira de segurança intrínseca. Deve-se assegurar a continuidade da blindagem do cabo em mais do que 90% do comprimento total do cabo.
O shield deve cobrir completamente os circuitos elétricos através dos conectores, acopladores, splices e caixas de distribuição e junção.
Nunca se deve utilizar o shield como condutor de sinal. É preciso verificar a continuidade do shield até o último equipamento PA do segmento, analisando a conexão e acabamento, pois este não deve ser aterrado nas carcaças dos equipamentos.
Em áreas classificadas, se uma equalização de potencial entre a área segura e área perigosa não for possível, o shield deve ser conectado diretamente ao terra (Equipotencial Bonding System) somente no lado da área perigosa. Na área segura, o shield deve ser conectado através de um acoplamento capacitivo (capacitor preferencialmente cerâmico (dielétrico sólido), C<= 10nF, tensão de isolação >= 1.5kV).
Figura 30 – Combinação Ideal de Shield e Aterramento.
Figura 31 – Aterramento Capacitivo.
A IEC 61158-2 recomenda que se tenha a isolação completa. Este método é usado principalmente nos Estados Unidos e na Inglaterra. Neste caso, o shield é isolado de todos os terras, a não ser o ponto de terra do negativo da fonte ou da barreira de segurança intrínseca do lado seguro.O shield tem continuidade desde a saída do coupler DP/PA, passa pelas caixas de junções e distribuições e chega até os equipamentos. As carcaças dos equipamentos são aterradas individualmente do lado não seguro. Este método tem a desvantagem de não proteger os sinais totalmente dos sinais de alta freqüência e, dependendo da topologia e comprimento dos cabos, pode gerar em alguns casos a intermitência de comunicação. Recomenda-se nestes casos o uso de canaletas metálicas.
Uma outra forma complementar à primeira, seria ainda aterrar as caixas de junções e as carcaças dos equipamentos em uma linha de equipotencial de terra, do lado não seguro. Os terras do lado não seguro com o lado seguro são separados.
A condição de aterramento múltiplo também é comum, onde se tem uma proteção mais efetiva às condições de alta freqüência e ruídos eletromagnéticos. Este método é preferencialmente adotado na Alemanha e em alguns países da Europa. Neste método, o shield é aterrado no ponto de terra do negativo da fonte ou da barreira de segurança intrínseca do lado seguro e além disso, no terra das caixas de junções e nas carcaças dos equipamentos, sendo estas também aterradas pontualmente, no lado não seguro. Uma outra condição seria complementar a esta, porém os terras seriam aterrados em conjunto em uma linha equipotencial de terra, unindo o lado não seguro ao lado seguro.
Para mais detalhes, sempre consultar as normas de segurança do local. Recomenda-se utilizar a IEC 60079-14 como referência em aplicações em áreas classificadas.
Figura 32 – Aterramento e Shield – Várias formas
O shield (a malha, assim como a lâmina de alumínio) deve ser conectado ao terra funcional do sistema em todas as estações (via conecto e cabo DP), de tal forma a proporcionar uma ampla área de conexão com a superfície condutiva aterrada.
A máxima proteção se dá com os todos os pontos aterrados, onde se proporciona um caminho de baixa impedância aos sinais de alta freqüência.
Em casos onde se tem um diferencial de tensão entre os pontos de aterramento recomenda-se passar junto ao cabeamento uma linha de equalização de potencial (a própria calha metálica pode ser usada ou por exemplo um cabo AWG 10-12). Veja figura 33.
Figura 33 – Linha de Equipotencial
Em termos de cabeamento, é recomendado o par de fios trançados com 100% de cobertura do shield. As melhores condições de atuação do shield se dão com pelo menos 80% de cobertura.
Quando se fala em shield e aterramento, na prática existem outras maneiras de tratar este assunto, onde há muitas controvérsias, como por exemplo, o aterramento do shield pode ser feito em cada estação através do conector 9-pin sub D (veja figura 34), onde a carcaça do conector dá contato com o shield neste ponto e ao conectar na estação é aterrado. Este caso, porém, deve ser analisado pontualmente e verificado em cada ponto a graduação de potencial dos terras e se necessário, equalizar estes pontos.
Em áreas perigosas deve-se sempre fazer o uso das recomendações dos órgãos certificadores e das técnicas de instalação exigidas pela classificação das áreas. Um sistema intrinsecamente seguro deve possui componentes que devem ser aterrados e outros que não. O aterramento tem a função de evitar o aparecimento de tensões consideradas inseguras na área classificada. Na área classificada evita-se o aterramento de componentes intrinsecamente seguros, a menos que o mesmo seja necessário para fins funcionais, quando se emprega a isolação galvânica. A normalização estabelece uma isolação mínima de 500 Vca. A resistência entre o terminal de aterramento e o terra do sistema deve ser inferior a 1Ω. No Brasil, a NBR-5418 regulamenta a instalação em atmosferas potencialmente explosivas.
Um outro cuidado que deve ser tomado é o excesso de terminação. Alguns dispositivos possuem terminação on-board.
Figura 34 – Detalhe do conector típico 9-Pin Sub D
A figura 35 apresenta detalhes de cabeamento, shield e aterramento quando se tem áreas distintas.
Quanto ao aterramento, recomenda-se agrupar circuitos e equipamentos com características semelhantes de ruído em distribuição em série e unir estes pontos em uma referência paralela. Recomenda aterrar as calhas e bandejamentos.
Um erro comum é o uso de terra de proteção como terra de sinal. Vale lembrar que este terra é muito ruidoso e pode apresentar alta impedância. É interessante o uso de malhas de aterramento, pois apresentam baixa impedância. Condutores comuns com altas freqüências apresentam a desvantagem de terem alta impedância. Os loops de correntes devem ser evitados. O sistema de aterramento deve ser visto como um circuito que favorece o fluxo de corrente sob a menor indutância possível. O valor de terra deve ser menor do que 10 Ω.
Figura 35 – Detalhe de cabeamento em áreas distintas com potenciais de terras equalizados
Vimos neste artigo vários detalhes sobre aterramento, blindagens, ruídos, interferências, etc. Todo projeto de automação deve levar em conta os padrões para garantir níveis de sinais adequados, assim como, a segurança exigida pela aplicação.
Recomenda-se que anualmente se tenha ações preventivas de manutenção, verificando cada conexão ao sistema de aterramento, onde deve-se assegurar a qualidade de cada conexão em relação à robustez, confiabilidade e baixa impedância (deve-se garantir que não haja contaminação e corrosão).
Este artigo não substitui a NBR 5410, a NBR 5418, os padrões IEC 61158 e IEC 61784 e nem os perfis e guias técnicos do PROFIBUS. Em caso de discrepância ou dúvida,as normas, os padrões IEC 61158 e IEC 61784, perfis, guias técnicos e manuais de fabricantes prevalecem. Sempre que possível, consulte a EN50170 para as regulamentações físicas, assim como as práticas de segurança de cada área.
Acesse a lista completa de artigos técnicos SMAR.
* César Cassiolato foi Diretor de Marketing, Qualidade e Engenharia de Projetos & Serviços da Nova Smar S/A, foi Presidente da Associação PROFIBUS Brasil América Latina de 2006 a 2010, Diretor Técnico do Centro de Competência e Treinamento em PROFIBUS, Diretor do FDT Group no Brasil, Engenheiro Certificado na Tecnologia PROFIBUS e Instalações PROFIBUS pela Universidade de Manchester.
"Utilizamos cookies essenciais e tecnologias semelhantes de acordo com a nossa Política de Privacidade e, ao continuar navegando, você concorda com estas condições." Ler mais